BIOSYNTHESIS OF THE PIPERIDINE NUCLEUS METABOLISM OF DL-€-N-METHYL-³H-LYSINE-2-¹⁴C BY SEDUM ACRE

PAT KORZAN and TERRY J. GILBERTSON*

College of Pharmacy and Department of Chemistry, South Dakota State University, Brookings, SD 57006, U.S.A.

(Received 27 February 1973. Accepted 2 August 1973)

Key Word Index—Sedum acre; Crassulaceae; piperidine alkaloids; ϵ -N-methyllysine; sedamine; biosynthesis. biosynthesis.

Abstract— $DL \leftarrow N$ -Methyl- 3H -lysine- $^2L^4C$ was prepared and administered to excised shoots of *Sedum acre* from which DL-sedamine was isolated. The ϵ -N-methyllysine was not incorporated without degradation and, therefore, it is probably not a direct precursor of the piperidine ring of sedamine.

INTRODUCTION

RECENT experiments^{1,2} suggested that ϵ -N-methyllysine might be a precursor of those piperidine alkaloids which incorporate lysine in an unsymmetrical manner. In order to investigate this question, we prepared DL- ϵ -N-methyllysine-2-¹⁴C by methylation of DL- α -N-benzoyl- ϵ -N-p-toluenesulfonyllysine-2-¹⁴C with dimethylsulfate and hydrolysis of the product. The DL- ϵ -N-methyl-³H-lysine was prepared in the same manner using ³H-dimethylsulfate. A mixture of ϵ -N-methyl-³H-lysine and ϵ -N-methyllysine-2-¹⁴C with a ratio of ³H: ¹⁴C of 6·4 was fed to excised shoots of *Sedum acre*.

RESULTS

 ϵ -N-Methyllysine was not readily taken up by the shoots; when the feeding was terminated after 5 days, only 67% had been taken up. Incorporation into sedamine was only 0.006% based on tritium. The ratio of 3H : ${}^1{}^4C$ in the alkaloid was 4.2; degradation showed that 91% of the tritium and 0% of the ${}^1{}^4C$ was in the methyl group of sedamine.

DISCUSSION

Spenser's hypothesis¹ that ϵ -N-methylysine is metabolized to an unsymmetrical precursor of sedamine and similar piperidine alkaloids has been examined. The change in the ratio of ${}^3\mathrm{H}:{}^{14}\mathrm{C}$ indicates that ϵ -N-methyllysine is not incorporated intact, but is degraded to a methyl derivative and lysine which are incorporated independently.

These results are in agreement with recent experiments of Spenser³ and Leete. Spenser's group fed methyl- 14 C-methionine and 3 H-lysine to S. acre. They isolated ϵ -N-methyllysine and sedamine. The 3 H: 14 C ratios of the two compounds were quite different. This indicated that ϵ -N-methyllysine was probably not a direct precursor.

- * Present address: The Upjohn Company, Kalamazoo, MI 49001, U.S.A.
- ¹ GUPTA, R. N. and SPENSER, I. D. (1970) Phytochemistry 9, 2329.
- ² GILBERTSON, T. J. (1972) Phytochemistry 11, 1737.
- ³ LEISTNER, E., GUPTA, R. N. and SPENSER, I. D. (1971) Abst. 10th Ann. Phytochem. Soc. N. Am. as reported by Leete in Ref. 4.
- ⁴ Lee Le, E. and Chedekel, M. R. (1972) Phytochemistry 11, 2751.

Leete's group fed N-methyl- Δ^1 -piperideinium chloride- 2^{-14} C to Nicotiana glauca. They isolated N-methylanabasine and anabasine. The N-methyl anabasine had the same specific activity as the N-methyl- Δ^1 -piperideinium chloride- 2^{-14} C. Therefore, N-methyl- Δ^1 -piperideinium chloride is an aberrant precursor.

These combined results show that ϵ -N-methyllysine is probably not a precursor of those piperidine alkaloids which incorporate lysine in an unsymmetrical fashion.

The actual biosynthetic route is probably that suggested by Leete and Chedekel⁴ in which L-lysine is decarboxylated and deaminated in the same step to 5-aminopentanal. The 5-aminopentanal cyclizes to Δ^1 -piperideine. The Δ^1 -piperideine condenses with benzoylacetic acid to form norsedamine. The norsedamine is methylated to sedamine.

EXPERIMENTAL

General methods. The m.ps were determined on a Fisher-Johns block. The IR spectra were obtained with a Beckman IR-33. The NMR spectra were obtained with a Varian A-60A. MS were obtained with a Finigan 3000. The radioactivity was determined with a Packard 3375 liquid scintillation counter using the external standard method of determining the efficiency.¹³

Labelled compounds. DL-lysine-2- 14 C and 3 H-dimethylsulfate were purchased from International Chemical and Nuclear Corporation. The DI- ϵ -N-methyllysine was prepared by the method of Benoiton⁵ except that all of the intermediates were isolated.

DL- ϵ -N-p-Toluenesulfonyllysine-2-¹⁴C. Dt.-Lysine-2-¹⁴C. HCl (1·028 g, 5·63 mM, 138 μCi) was dissolved in H₂O (65 ml) and heated to reflux. CuCO₃ . Cu(OH)₂ (1·670 g, 7·56 mM) was added in small portions. After the addition was complete, reflux was continued for 2 hr and the hot suspension filtered. The residue was washed with 50 ml hot H₂O. The filtrate and wash were combined and cooled. p-Toluenesulfonylchloride (1·58 g, 9·11 mM) in 65 ml acetone and NaHCO₃ (1·750 g, 20·63 mM) was added and the mixture stirred at room temp. for 10 hr. The copper complex was filtered, washed with 5 ml cold H₂O, 5 ml acetone and 5 ml Et₂O and dried (1·65 g, 88%). The finely ground copper complex was suspended in 25 ml H₂O and heated to reflux: H₂S was bubbled in for 15 min with stirring. The hot soln was acidified (0·65 ml 6 N HCl) and Cu₂S was filtered and the pH adjusted to 6 with 5 N NaOH. Dt.-ε-N-p-Toluenesulfonyllysine crystallized out. The yield (recrystallized) was 0·9441 g (55·8%), m.p. 235-240° (lit.6 237-238°).

DL- α -N-Benzoyl- ϵ -N-p-toluene sulfonylly sine-2-14C. DL- ϵ -N-p-toluene sulfonylly sine-2-14C (0.944 g, 3.14 mM) was added to ice-cold NaOH (0.251 g, 6.28 mM) in 5 ml H₂O. Benzoyl chloride (0.524 ml, 4.54 mM) in 1 ml Et₂O was added and the mixture stirred for 1 hr. It was acidified (HCl) and the aq. phase was decanted from an oil which was dissolved in H₂O with heating. The product crystallized out in the cold. The yield was 0.778 g (61.3%), m.p. 136-139° (lit. 140°)⁷. IR: (KBr) 3369, 3289, 1720, 1628 and 1155 cm⁻¹. MS: (70 eV) (M+) 404.

DL- α -N-Benzoyl- ϵ -N-p-toluenesulfonyl- ϵ -N-methyllysine-2-1⁴C. DL- α -Benzoyl- ϵ -N-p-toluenesulfonyllysine-2-1⁴C (0·779 g, 1·93 mM) was added to ice-cold NaOH (0·154 g, 3·85 mM) in 10 ml H₂O. Dimethyl sulfate (0·44 ml, 4·68 mM) was added and the soln was stirred until cloudy. Then 10 ml 2·5 N NaOH was added and the reaction continued for 1 hr. The cold soln was acidified (HCl) and on sitting in the cold the product crystallized. It was dried by dissolving in 30 ml acetone adding 30 ml C₆H₆ and evaporating at reduced pressure × 3. The product crystallized and was filtered and washed with Et₂O. The yield of DL- α -N-benzoyl- ϵ -N-p-toluenesulfonyl- ϵ -N-methyllysine-2-1⁴C was 0·436 g (54·2°), m.p. 90–92°. IR: (KBr) 3309, 1725, 1630 and 1150 cm⁻¹. NMR: (DMSO-d₆); 2·54 δ (N-Me). MS: (70 eV) (M⁺) 418.

DL- ϵ -N-Methyllysine-2-¹⁴C. HCl. DL- α -N-benzoyl- ϵ -N-p-toluenesulfonyl- ϵ -N-methyllysine-2-¹⁴C (0·436 g, 1·04 mM) was refluxed in 25 ml of 40% HBr for 2 hr. H₂O (25 ml) was added and the mixture cooled and filtered. The filtrate was evaporated. The semicrystalline residue was dissolved in H₂O (10 ml) and applied to a column of AG-50-8x (20 × 1·5 cm). The column was eluted with (50 ml) H₂O, (50 ml) † N HCl, (50 ml) H₂O, and (100 ml) NH₄OH and 10 ml fractions were collected. The ninhydrin positive fractions were combined and evaporated to dryness. The residue was dissolved in 20 ml 6 N HCl and the solvent evaporated. The residue was dried by dissolving in EtOH (2 × 15 ml) and evaporating. The dry residue was taken up in EtOH (5 ml). Pyridine was added to form the ϵ -N-methyllysine. HCl which was precipitated by the addition of Et₂O. It was recrystallized to constant specific activity from EtOH and Et₂O, m.p. 224–226°. It gave an IR (KBr) typical of amino acid hydrochlorides. The NMR (D₂O) had a peak at 2·70 δ assigned to N–Me. The yield was 0·0531 g (25·9%). The sp. act. was 5·24 × 10⁷ dpm/mM. Previous runs had afforded yields as high as 77%.

DL- ϵ -N-methyl- 3 H-lysine. HCl. The DL- ϵ -N-methyl- 3 H-lysine. HCl was prepared in the same manner as the DL- ϵ -N-methyllysine- 3 H-dimethyl sulfate. The sp. act. was 6.57×10^7 dpm/mM.

⁵ Benoiton, L. (1964) Can. J. Chem. 42, 2043.

⁶ Greenstein, J. P. and Winitz, M. (1961) Chemistry of the Amino Acids, Vol. 2, p. 1059, Wiley, New York.

⁷ ENGER, R. and HALLE, F. (1930) Z. Physiol. Chem. 191, 103.

DL-Sedamine. DL-Sedamine was prepared by the method of Beyerman et al. 8 m.p. 89-90° (lit. 89-90°). 8 The IR (KBr) was identical to that in the lit. 9

Administration of labelled DL- ϵ -N-methyllysine to Scdum acre. The S. acre plants were grown from seed in soil for 7 months. The labelled DL- ϵ -N-methyllysine was fed to excised shoots from these plants as described by Gupta and Spenser. Decause the uptake of tracer was slow, 2 ml nutrient soln was added in addition to the tracer solution and this maintained the shoots in a healthy condition for 5 days.

Isolation of DL-sedamine. The excised shoots (45 g) were rinsed with H_2O , and blended in CHCl₃ (250 ml) and NH₄OH (50 ml). Carrier sedamine (150 mg) was added and the mixture stood overnight. The CHCl₃ layer was washed (H_2O , 2×50 ml) and extracted with 5% v/v HCl (4×25 ml). The acid layer was washed with El_2O (3×50 ml). The acid layer was made alkaline with NH₄OH and extracted with El_2O (3×50 ml). The El₂O soln was dried (Na₂SO₄), and evaporated. The residue was taken up in hexane (40 ml). The hexane was reduced to 5 ml and the sedamine crystallized in the cold. The sedamine was purified to constant sp. act. by sublimation and recrystallization from hexane, m.p. $89-90^\circ$. The yield was $52\cdot3$ mg. The sp. act. was $1\cdot04 \times 10^4$ dpm/mM of 3 H and $2\cdot49 \times 10^3$ dpm/mM of ^{14}C .

Demethylation of DL-sedamine. DL-Sedamine (36.6 mg, 0.167 mM) was added to a flask containing freshly dist. HI (4 ml), NH_4I (100 mg), and $AuCl_3$ (one crystal). The flask was heated to 360° and the MeI produced was swept by N_2 through a trap containing 5% $CdSO_4$ and 5% $Na_2S_2O_3$ (1:1), into a cold trap containing EtOH (15 ml) and Et_3N (3 ml). After 1 hr, the trap was evaporated and the methyltriethyl- NH_4I was recrystallized from EtOH and Et_2O . The yield was 10.36 mg (26%) m.p. 295-300° (lit. 12 297°).

Acknowledgements—The authors thank the National Institutes of Health for support through Research Grant 1 R01 HE13613 MCHA.

- ⁸ BEYERMAN, H. C., EENSHUISTRA, J., EVELEENS, W. and ZWEISTRA, A. (1959) Rec. Trav. Chim. 78, 50.
- BEYERMAN, H. C., EVELEENS, W. and MULLER, Y. M. F. (1956) Rec. Trav. Chim. 75, 63.
- ¹⁰ GUPTA, R. N. and SPENSER, I. D. (1969) J. Biol. Chem. 244, 88.
- ¹¹ LEETE, E. (1956) J. Am. Chem. Soc. 78, 3520.
- ¹² ALWORTH, W. L., LIEBMAN, A. A. and RAPOPORT, H. (1964) J. Am. Chem. Soc. 86, 3375.
- ¹³ HETENYI, G. and REYNOLDS, J. (1966) J. Appl. Radiat. Isotopes 18, 331.